
Java Coding 2
Decisions, decisions…!

The if Statement

An if statement is like a fork in the road.
Depending upon a decision, different
parts of the program are executed.

Copyright © 2014 by John Wiley & Sons. All rights reserved. 3

The if Statement

 The if statement allows a program to carry out different

actions depending on the nature of the data to be

processed.

This elevator panel “skips” the thirteenth

floor. The floor is not actually

missing— the computer that controls

the elevator adjusts the floor numbers

above 13.

Copyright © 2014 by John Wiley & Sons. All rights reserved. 4

The if Statement

 Flowchart with two branches

 You can include as many statements in each branch as

you like.

Copyright © 2014 by John Wiley & Sons. All rights reserved. 5

The if Statement

 Flowchart with one branches

 When there is nothing to do in the else branch, omit it entirely

int actualFloor = floor;

if (floor > 13)

{

actualFloor--;

} // No else needed

Copyright © 2014 by John Wiley & Sons. All rights reserved. 6

Syntax 4.1 The if Statement

Copyright © 2014 by John Wiley & Sons. All rights reserved. 7

section_1/ElevatorSimulation.java

1 import java.util.Scanner;

2

3 /**

4 This program simulates an elevator panel that skips the 13th floor.

5 */

6 public class ElevatorSimulation

7 {

8 public static void main(String[] args)

9 {

10 Scanner in = new Scanner(System.in);

11 System.out.print("Floor: ");

12 int floor = in.nextInt();

13

14 //Adjust floor if necessary

15

16 int actualFloor;

17 if (floor > 13)

18 {

19 actualFloor = floor - 1;

20 }

21 else

22 {

23 actualFloor = floor;

24 }

25 Continued

code/section_1/ElevatorSimulation.java

Copyright © 2014 by John Wiley & Sons. All rights reserved. 8

section_1/ElevatorSimulation.java

26 System.out.println("The elevator will travel to the actual floor "

27 + actualFloor);

28 }

29 }

Program Run:

Floor: 20

The elevator will travel to the actual floor 19

code/section_1/ElevatorSimulation.java

Decision

• The Java if statement

if (condition)
statementT;

else
statementF;

if (condition)
statementT;

 where

 statement is any Java statement

 condition is a boolean expression

Conditions
• Any expression with Boolean result

• boolean variable
• canVote taxable found

• Method with boolean result
• exists(filename) isSent(myEmail)

• Operand relationalOperator Operand
(where relationalOperator is: >, <, >=, <=, ==, !=)

• age >= 18 speed != 0 year % 4 == 0

• Boolean expressions combined with logicalOperator
(where logicalOperator is: &&, ||, !)

• height > 2 && weight <= 80 x < 5 || x > 10

• ! exists(filename) aChar >= ‘0’ && aChar <= ‘9’

Note the use of ==

as opposed to =

Relational operators also

work for char & boolean

Ordering is defined by

Unicode for char

Conditions
• Note: cannot write “0 <= x < 10” must say “x >= 0 && x < 10”

• For non-primitive types, == & != will compile but may not always give the
expected result!

• For String’s use: string1.equals(string2) or string1.equalsIgnoreCase(string2)

• For ordering use: string1.compareTo(string2) { neg., zero, pos. result}

• aChar >= ‘0’ && aChar <= ‘9’

• Tests whether aChar contains a digit or not by comparing the ASCII codes

• Similar idea is used to test for Letters and to convert between upper & lower case

• Only works for English

• Use Character.isDigit(aChar); & Character.toUpperCase(aChar); etc.

• No need for the “== true” in “if (x > 0 == true)” or “if (canVote == true)”

• “if (x > 0 == false)” or “if (canVote == false)” is equally bad

• Rewrite as “if (x <= 0)” or “if (!canVote)”

• Comparing real numbers: if(Math.abs(real1 – real2) < epsilon)

Copyright © 2014 by John Wiley & Sons. All rights reserved. 12

Comparing Values: Relational Operators

 Relational operators compare values:

 The == denotes equality testing:

floor = 13; // Assign 13 to floor

if (floor == 13) // Test whether floor equals 13

 Relational operators have lower precedence than

arithmetic operators:

floor - 1 < 13

Copyright © 2014 by John Wiley & Sons. All rights reserved. 13

Comparing Floating-Point Numbers

 Consider this code:

double r = Math.sqrt(2);

double d = r * r -2;

if (d == 0)

{

System.out.println("sqrt(2)squared minus 2 is 0");

}

else

{

System.out.println("sqrt(2)squared minus 2 is not 0 but " + d);

}

 It prints:

sqrt(2)squared minus 2 is not 0 but 4.440892098500626E-16

 This is due to round-off errors

 When comparing floating-point numbers, don’t test for

equality.

• Check whether they are close enough.

Copyright © 2014 by John Wiley & Sons. All rights reserved. 14

Comparing Floating-Point Numbers

 To avoid roundoff errors, don't use == to compare

floating-point numbers.

 To compare floating-point numbers test whether they

are close enough: |x - y| ≤ ε

final double EPSILON = 1E-14;

if (Math.abs(x - y) <= EPSILON)

{

// x is approximately equal to y

}

 ε is commonly set to 10
-14

Copyright © 2014 by John Wiley & Sons. All rights reserved. 15

Comparing Strings

 To test whether two strings are equal to each other, use

equals method:

if (string1.equals(string2)) . . .

 Don't use == for strings!

if (string1 == string2) // Not useful

 == tests if two strings are stored in the same memory

location

 equals method tests equal contents

Copyright © 2014 by John Wiley & Sons. All rights reserved. 16

Comparing Strings – compareTo Method

 compareTo method compares strings in lexicographic

order - dictionary order.

 string1.compareTo(string2) < 0 means:

• string1 comes before string2 in the dictionary

 string1.compareTo(string2) > 0 means:

• string1 comes after string2 in the dictionary

 string1.compareTo(string2) == 0 means:

• string1 and string2 are equal

Copyright © 2014 by John Wiley & Sons. All rights reserved. 17

 Lexicographic Ordering

Lexicographic Ordering

Copyright © 2014 by John Wiley & Sons. All rights reserved. 18

 Differences in dictionary ordering and ordering in Java

• All uppercase letters come before the lowercase letters. "Z"

comes before "a"

• The space character comes before all printable characters

• Numbers come before letters

• Ordering of punctuation marks varies

 To see which of two terms comes first in the dictionary,

consider the first letter in which they differ

Lexicographic Ordering

Copyright © 2014 by John Wiley & Sons. All rights reserved. 19

Syntax 4.2 Comparisons

Copyright © 2014 by John Wiley & Sons. All rights reserved. 20

Relational Operator Examples

Copyright © 2014 by John Wiley & Sons. All rights reserved. 21

Self Check

Answer: input.equals("Y")

Supply a condition in this if statement to test whether the

user entered a Y:

System.out.println("Enter Y to quit.");

String input = in.next();

if (. . .)

{

System.out.println("Goodbye.");

}

Copyright © 2014 by John Wiley & Sons. All rights reserved. 22

Self Check

Answer: str.equals("") or str.length() == 0

Give two ways of testing that a string str is the empty

string.

Copyright © 2014 by John Wiley & Sons. All rights reserved. 23

Self Check

Answer: Syntactically incorrect: e, g, h. Logically questionable: a,

d, f.

Which of the following comparisons are syntactically incorrect?

Which of them are syntactically correct, but logically

questionable?

String a = "1”;

String b = "one”;

double x = 1;

double y = 3 * (1.0 / 3);

a. a == "1"

b. a == null

c. a.equals("")

d. a == b

e. a == x

f. x == y

g. x - y == null

h. x.equals(y)

Copyright © 2014 by John Wiley & Sons. All rights reserved. 24

Avoid Duplication in Branches

 If you have duplicate code in each branch, move it out of the if

statement.

 Don't do this

if (floor > 13)

{

actualFloor = floor – 1;

System.out.println("Actual floor: " + actualFloor);

}

else

{

actualFloor = floor;

System.out.println("Actual floor: " + actualFloor);

}

Copyright © 2014 by John Wiley & Sons. All rights reserved. 25

Avoid Duplication in Branches

 Do this instead

if (floor > 13)

{

actualFloor = floor – 1;

}

else

{

actualFloor = floor;

}

System.out.println("Actual floor: " + actualFloor);

 It will make the code much easier to maintain.

 Changes will only need to be made in one place.

Examples (1)

• Print message when x is positive
• if (x > 0)

System.out.println(“The value of x is positive”);

• Print warning if oil pressure is below a specified limit
• if (oilPressure < MINIMIUM_OIL_PRESSURE)

System.out.println(“Warning – low !”);

• Report whether x is negative or not
• if (x < 0)

System.out.println(“Negative”);

else

System.out.println(“Positive or zero”);

• Rewrite with alternative condition

• Check user’s password
• if (!actualPassword.equals(enteredPassword))

System.out.println(“Sorry, incorrect Password”);

else

// do secure things!

Examples (2)

• Compute z as absolute value of x-y
• if (x – y < 0)

z = y – x;
else

z = x – y;

• if (x > y)
z = x - y;

else
z = y - x;

• z = x – y;
if (z < 0)

z = -z; Can also use

z = Math.abs(x-y);

Copyright © 2014 by John Wiley & Sons. All rights reserved. 28

Multiple Alternatives: Sequences of

Comparisons

 Multiple if statements can be combined to evaluate

complex decisions.

 You use multiple if statements to implement multiple

alternatives.

Copyright © 2014 by John Wiley & Sons. All rights reserved. 29

Multiple Alternatives: Sequences of

Comparisons

 Example: damage done by earthquake of a given

magnitude on the Richter scale:

if (richter >= 8.0)

{

description = "Most structures fall”;

}

else if (richter >= 7.0)

{

description = "Many buildings destroyed”;

}

else if (richter >= 6.0)

{

description = "Many buildings considerably damaged, some collapse”;

}

else if (richter >= 4.5)

{

description = "Damage to poorly constructed buildings”;

}

else

{

description = "No destruction of buildings”;

}

Copyright © 2014 by John Wiley & Sons. All rights reserved. 30

Multiple Alternatives: Sequences of

Comparisons

 As soon as one of the four tests succeeds:

• The effect is displayed

• No further tests are attempted.

 If none of the four cases applies

• The final else clause applies

• A default message is printed.

Copyright © 2014 by John Wiley & Sons. All rights reserved. 31

Multiple Alternatives - Flowchart

Copyright © 2014 by John Wiley & Sons. All rights reserved. 32

Multiple Alternatives

 The order of the if and else if matters

 Error

if (richter >= 4.5) // Tests in wrong order

{

description = "Damage to poorly constructed buildings”;

}

else if (richter >= 6.0)

{

description = "Many buildings considerably damaged, some collapse”;

}

else if (richter >= 7.0)

{

description = "Many buildings destroyed”;

}

else if (richter >= 8.0)

{

description = "Most structures fall”;

}

 When using multiple if statements, test general

conditions after more specific conditions.

Examples (3)

• Given three values stored in variables first, second, third,
store the minimum in a variable called min

• if (first < second)
min = first;

else

min = second;

if (third < min)

min = third;

• Generalise…?

Examples (3)

• Begin with simplest case, that of two variables, then
work up!

• Could also compare first & second, then first & third, &
second & third.

If (first < second && first < third)

min is first

else if (third < first && third < second)

min is third

else if (second < first && second < third)

min is second

Copyright © 2014 by John Wiley & Sons. All rights reserved. 35

Nested Branches

 Nested set of statements:

• An if statement inside another

 Example: Federal Income Tax

• Tax depends on marital status and income

Copyright © 2014 by John Wiley & Sons. All rights reserved. 36

Nested Branches

 We say that the income test is nested inside the test for

filing status

 Two-level decision process is reflected in two levels of if

statements in the program

 Computing income taxes requires multiple levels of

decisions.

Copyright © 2014 by John Wiley & Sons. All rights reserved. 37

Nested Branches - Flowchart

Copyright © 2014 by John Wiley & Sons. All rights reserved. 38

section_4/TaxReturn.java

1 /**

2 A tax return of a taxpayer in 2008.

3 */

4 public class TaxReturn

5 {

6 public static final int SINGLE = 1;

7 public static final int MARRIED = 2;

8

9 private static final double RATE1 = 0.10;

10 private static final double RATE2 = 0.25;

11 private static final double RATE1_SINGLE_LIMIT = 32000;

12 private static final double RATE1_MARRIED_LIMIT = 64000;

13

14 private double income;

15 private int status;

16

17 /**

18 Constructs a TaxReturn object for a given income and

19 marital status.

20 @param anIncome the taxpayer income

21 @param aStatus either SINGLE or MARRIED

22 */

23 public TaxReturn(double anIncome, int aStatus)

24 {

25 income = anIncome;

26 status = aStatus;

27 }

28

Continued

code/section_4/TaxReturn.java

Copyright © 2014 by John Wiley & Sons. All rights reserved. 39

section_4/TaxReturn.java

29 public double getTax()

30 {

31 double tax1 = 0;

32 double tax2 = 0;

33

34 if (status == SINGLE)

35 {

36 if (income <= RATE1_SINGLE_LIMIT)

37 {

38 tax1 = RATE1 * income;

39 }

40 else

41 {

42 tax1 = RATE1 * RATE1_SINGLE_LIMIT;

43 tax2 = RATE2 * (income - RATE1_SINGLE_LIMIT);

44 }

45 }

46 else

47 {

48 if (income <= RATE1_MARRIED_LIMIT)

49 {

50 tax1 = RATE1 * income;

51 }

52 else

53 {

54 tax1 = RATE1 * RATE1_MARRIED_LIMIT;

55 tax2 = RATE2 * (income - RATE1_MARRIED_LIMIT);

56 }

57 }

58

59 return tax1 + tax2;

60 }

61 }

code/section_4/TaxReturn.java

Copyright © 2014 by John Wiley & Sons. All rights reserved. 40

section_4/TaxCalculator.java

1 import java.util.Scanner;

2

3 /**

4 This program calculates a simple tax return.

5 */

6 public class TaxCalculator

7 {

8 public static void main(String[] args)

9 {

10 Scanner in = new Scanner(System.in);

11

12 System.out.print("Please enter your income: ");

13 double income = in.nextDouble();

14

15 System.out.print("Are you married? (Y/N) ");

16 String input = in.next();

17 int status;

18 if (input.equals("Y"))

19 {

20 status = TaxReturn.MARRIED;

21 }

22 else

23 {

24 status = TaxReturn.SINGLE;

25 }

26

27 TaxReturn aTaxReturn = new TaxReturn(income, status);

28

29 System.out.println("Tax: "

30 + aTaxReturn.getTax());

31 }

32 }

Continued

code/section_4/TaxCalculator.java

Copyright © 2014 by John Wiley & Sons. All rights reserved. 41

section_4/TaxCalculator.java

Program Run

Please enter your income: 80000

Are you married? (Y/N) Y

Tax: 10400.0

code/section_4/TaxCalculator.java

Copyright © 2014 by John Wiley & Sons. All rights reserved. 42

Self Check

Answer: Change else in line 22 to

else if (maritalStatus.equals("N"))

and add another branch after line 25:

else

{

System.out.println("Error: Please answer Y or N.");

}

How would you modify the TaxCalculator.java

program in order to check that the user entered a

correct value for the marital status (i.e., Y or N)?

Examples (4)

• Avoid divide-by-zero errors
• if (y = 0)

System.out.println(“Error: can’t divide by zero”);

else

z = x / y;

System.out.println(“The result is “ + z);

• Use braces (curly brackets) to form compound statement

{

statement;

statement;

statement;

}

statement;

Examples (5)

• Choosing between three alternatives:
• if (x < 0)

System.out.println(“Negative”);
else {

if (x == 0)
System.out.println(“Zero”);

else
System.out.println(“Positive”);

}

• if (x >= 0) {
if (x == 0)

System.out.println(“Zero”);
else

System.out.println(“Positive”);
}
else

System.out.println(“Negative”);

Examples (6)

• A neater way of writing mutually exclusive alternatives
(nested if):

• if (x < 0)

System.out.println(“Negative”);

else if (x == 0)

System.out.println(“Zero”);

else if (x < 5)

System.out.println(“1 – 4 inclusive”);

else System.out.println(“>= 5”);

// & x >= 0

// & x >= 0 & x != 0

// & x >= 0 & x != 0 & x >= 5

Distinguish…

if (cond)
print “A”

else if (cond)
print “B”

else if (cond)
print “C”

else
print “D”

if (cond)
print “A”

if (cond)
print “B”

if (cond)
print “C”

if (cond)
print “D”

Copyright © 2014 by John Wiley & Sons. All rights reserved. 47

Boolean Variables and Operators

 To store the evaluation of a logical condition that can be

true or false, you use a Boolean variable.

 The boolean data type has exactly two values, denoted

false and true.

boolean failed = true;

 Later in your program, use the value to make a decision

if (failed) // Only executed if failed has been set to true

{ . . . }

 A Boolean variable is also called a flag because it can be

either up (true) or down (false).

Copyright © 2014 by John Wiley & Sons. All rights reserved. 48

Boolean Variables and Operators

 You often need to combine Boolean values when making

complex decisions

 An operator that combines Boolean conditions is called a

Boolean operator.

 The && operator is called and

• Yields true only when both conditions are true.

 The || operator is called or

• Yields the result true if at least one of the conditions is true.

Copyright © 2014 by John Wiley & Sons. All rights reserved. 49

Boolean Variables and Operators

 To test if water is liquid at a given temperature

if (temp > 0 && temp < 100)

{

System.out.println("Liquid");

}

 Flowchart

Copyright © 2014 by John Wiley & Sons. All rights reserved. 50

Boolean Variables and Operators

 To test if water is not liquid at a given temperature

if (temp <= 0 || temp >= 100)

{

System.out.println(“Not liquid");

}

 Flowchart

Copyright © 2014 by John Wiley & Sons. All rights reserved. 51

Boolean Variables and Operators

 To invert a condition use the not Boolean operator

 The ! operator takes a single condition

• Evaluates to true if that condition is false and

• Evaluates to false if the condition is true

 To test if the Boolean variable frozen is false:

if (!frozen) { System.out.println("Not frozen"); }

Copyright © 2014 by John Wiley & Sons. All rights reserved. 52

Self Check 4.33

Answer: x == 0 && y == 0

Suppose x and y are two integers. How do you test

whether both of them are zero?

Copyright © 2014 by John Wiley & Sons. All rights reserved. 53

Self Check 4.34

Answer: x == 0 || y == 0

How do you test whether at least one of them is zero?

Copyright © 2014 by John Wiley & Sons. All rights reserved. 54

Self Check 4.35

Answer:

(x == 0 && y != 0) || (y == 0 && x != 0)

How do you test whether exactly one of them is zero?

Copyright © 2014 by John Wiley & Sons. All rights reserved. 55

Self Check 4.36

Answer: The same as the value of frozen.

What is the value of !!frozen?

Copyright © 2014 by John Wiley & Sons. All rights reserved. 56

Application: Input Validation

 You need to make sure that the user-supplied values are

valid before you use them.

 Elevator example: elevator panel has buttons labeled 1

through 20 (but not 13)

 The number 13 is invalid

if (floor == 13)

{

System.out.println("Error: There is no thirteenth floor.");

}

 Numbers out of the range 1 through 20 are invalid

if (floor <= 0 || floor > 20)

{

System.out.println("Error: The floor must be between 1 and 20.");

}

Copyright © 2014 by John Wiley & Sons. All rights reserved. 57

Application: Input Validation

 To avoid input that is not an integer

if (in.hasNextInt())

{

int floor = in.nextInt();

// Process the input value.

}

else

{

System.out.println("Error: Not an integer.");

}

Copyright © 2014 by John Wiley & Sons. All rights reserved. 58

Section_8/ElevatorSimulation2.java

1 import java.util.Scanner;

2

3 /**

4 This program simulates an elevator panel that skips the 13th floor, checking for

5 input errors.

6 */

7 public class ElevatorSimulation2

8 {

9 public static void main(String[] args)

10 {

11 Scanner in = new Scanner(System.in);

12 System.out.print("Floor: ");

13 if (in.hasNextInt())

14 {

15 // Now we know that the user entered an integer

16

17 int floor = in.nextInt();

18

Continued

code/section_8/ElevatorSimulation2.java

Copyright © 2014 by John Wiley & Sons. All rights reserved. 59

Section_8/ElevatorSimulation2.java

19 if (floor == 13)

20 {

21 System.out.println("Error: There is no thirteenth floor.");

22 }

23 else if (floor <= 0 || floor > 20)

24 {

25 System.out.println("Error: The floor must be between 1 and 20.");

26 }

27 else

28 {

29 // Now we know that the input is valid

30

31 int actualFloor = floor;

32 if (floor > 13)

33 {

34 actualFloor = floor - 1;

35 }

36

37 System.out.println("The elevator will travel to the actual floor "

38 + actualFloor);

39 }

40 }

41 else

42 {

43 System.out.println("Error: Not an integer.");

44 }

45 }

46 }

Continued

code/section_8/ElevatorSimulation2.java

Copyright © 2014 by John Wiley & Sons. All rights reserved. 60

Section_8/ElevatorSimulation2.java

Program Run

Floor: 13

Error: There is no thirteenth floor.

code/section_8/ElevatorSimulation2.java

Copyright © 2014 by John Wiley & Sons. All rights reserved. 61

Self Check 4.39

Answer:

floor == 13 || floor <= 0 || floor > 20

Your task is to rewrite lines 19–26 of the

ElevatorSimulation2 program so that there is a

single if statement with a complex condition. What is

the condition?

if (. . .)

{

System.out.println("Error: Invalid floor number");

}

